解释在人类学习中发挥着相当大的作用,特别是在仍然在形成抽象的主要挑战,以及了解世界的关系和因果结构的地区。在这里,我们探索强化学习代理人是否同样可以从解释中受益。我们概述了一系列关系任务,涉及选择一个在一个集合中奇数一个的对象(即,沿许多可能的特征尺寸之一的唯一)。奇数一张任务要求代理在一组对象中的多维关系上推理。我们展示了代理商不会仅从奖励中学习这些任务,但是当它们也培训以生成语言解释对象属性或选择正确或不正确时,实现> 90%的性能。在进一步的实验中,我们展示了预测的解释如何使代理能够从模糊,因果困难的训练中适当地推广,甚至可以学习执行实验干预以识别因果结构。我们表明解释有助于克服代理人来解决简单特征的趋势,并探讨解释的哪些方面使它们成为最有益的。我们的结果表明,从解释中学习是一种强大的原则,可以为培训更强大和一般机器学习系统提供有希望的道路。
translated by 谷歌翻译
基于概念的黑框模型的解释通常更为直观,让人类理解。基于概念的解释最广泛采用的方法是概念激活向量(CAV)。CAV依靠学习给定模型和概念的某些潜在表示之间的线性关系。线性可分离性通常是隐式假定的,但通常不正确。在这项工作中,我们从基于概念的解释和提出的概念梯度(CG)的最初意图开始,将基于概念的解释扩展到线性概念功能之外。我们表明,对于一般(潜在的非线性)概念,我们可以数学上评估如何影响模型预测的概念的小变化,从而导致基于梯度的解释扩展到概念空间。我们从经验上证明,在玩具示例和现实世界数据集中,CG表现优于CAV。
translated by 谷歌翻译
本文涉及分割中的伪标记。我们的贡献是四倍。首先,我们提出了伪标签的新表述,作为一种预期最大化(EM)算法,用于清晰的统计解释。其次,我们纯粹基于原始伪标记,即Segpl,提出了一种半监督的医学图像分割方法。我们证明,SEGPL是针对针对2D多级MRI MRI脑肿瘤分段任务和3D二进制CT肺部肺血管分段任务的半监督分割的最新一致性正则方法的竞争方法。与先前方法相比,SEGPL的简单性允许更少的计算成本。第三,我们证明了SEGPL的有效性可能源于其稳健性抵抗分布噪声和对抗性攻击。最后,在EM框架下,我们通过变异推理引入了SEGPL的概率概括,该推论学习了训练期间伪标记的动态阈值。我们表明,具有变异推理的SEGPL可以通过金标准方法深度集合在同步时执行不确定性估计。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
感知视频质量评估(VQA)是许多流和视频共享平台的组成部分。在这里,我们以自我监督的方式考虑学习具有感知相关的视频质量表示的问题。失真类型的识别和降解水平确定被用作辅助任务,以训练一个深度学习模型,该模型包含深度卷积神经网络(CNN),该模型提取了空间特征,以及捕获时间信息的复发单元。该模型是使用对比度损失训练的,因此我们将此训练框架和结果模型称为对比度质量估计器(Conviqt)。在测试过程中,训练有素的模型的权重被冷冻,并且线性回归器将学习的功能映射到No-Reference(NR)设置中的质量得分。我们通过分析模型预测与地面真相质量评级之间的相关性,并与最先进的NR-VQA模型相比,我们对多个VQA数据库进行了全面评估,并实现竞争性能在这些数据库上进行了培训。我们的消融实验表明,学到的表示形式非常强大,并且在合成和现实的扭曲中很好地概括了。我们的结果表明,可以使用自我监督的学习来获得具有感知轴承的引人注目的表示。这项工作中使用的实现已在https://github.com/pavancm/conviqt上提供。
translated by 谷歌翻译
机器学习方法利用多参数生物标志物,特别是基于神经影像动物,具有改善痴呆早期诊断的巨大潜力,并预测哪些个体存在发展痴呆的风险。对于机器学习领域的基准算法和痴呆症中的神经影像症,并评估他们在临床实践中使用的潜力和临床试验,七年的大挑战已经在过去十年中组织:Miriad,Alzheimer的疾病大数据梦,Caddementia,机器学习挑战,MCI神经影像动物,蝌蚪和预测分析竞争。基于两个挑战评估框架,我们分析了这些大挑战如何互相补充研究问题,数据集,验证方法,结果和影响。七个大挑战解决了与(临床前)痴呆症(临床)痴呆症的筛查,诊断,预测和监测有关的问题。临床问题,任务和性能指标几乎没有重叠。然而,这具有提供对广泛问题的洞察力的优势,它也会限制对挑战的结果的验证。通常,获胜算法执行严格的数据预处理并组合了广泛的输入特征。尽管最先进的表演,但临床上没有挑战评估的大部分方法。为了增加影响,未来的挑战可以更加关注统计分析,对其与高于阿尔茨海默病的临床问题,以及使用超越阿尔茨海默病神经影像疾病的临床问题,以及超越阿尔茨海默病的临床问题。鉴于过去十年中汲取的潜力和经验教训,我们在未来十年及其超越的机器学习和神经影像中的大挑战前景兴奋。
translated by 谷歌翻译
用户生成的内容(UGC)的盲或禁区视频质量评估已成为趋势,具有挑战性,迄今未解决的问题。因此,适用于该内容的准确和高效的视频质量预测因素都需要实现更智能的分析和处理UGC视频的需求。以前的研究表明,自然场景统计和深度学习特征既足以捕获空​​间扭曲,这有助于UGC视频质量问题的重要方面。然而,这些模型无法对实际应用中预测复杂和不同的UGC视频的质量无能为力或效率低。在这里,我们为UGC含量介绍了一种有效且高效的视频质量模型,我们将我们展示快速准确的视频质量评估员(Rapique),我们展示了与最先进的(SOTA)模型相对表现,而是具有订单-magnitude更快的运行时。 Rapique结合并利用了质量意识的现场统计特征和语义知识的深度卷积功能的优势,使我们能够设计用于视频质量建模的第一通用和有效的空间和时间(时空)带通统计模型。我们对最近的大型UGC视频质量数据库的实验结果表明,Rapique以相当更低的计算费用提供所有数据集的顶级表现。我们希望这项工作促进并激发进一步努力实现潜在的实时和低延迟应用程序的视频质量问题的实际建模。为促进公共用途,在线进行了求助的实施:\ url {https://github.com/vztu/rapique}。
translated by 谷歌翻译
深度学习的最近历史一直是成就之一:从游戏中的人类胜利到图像分类,语音识别,翻译和其他任务的世界领先表现。但是,这一进展带来了对计算能力的渴望。本文分类了这种依赖性的程度,表明各种应用程序的进展非常依赖于计算能力的增加。推断向前的信仰表明,沿当前线的进步正在经济,技术和环境上迅速变得不可持续。因此,在这些应用程序中的持续进展将需要更大的计算方法,这要么必须从变化到深度学习或转移到其他机器学习方法。
translated by 谷歌翻译
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
translated by 谷歌翻译
In this paper we introduce deep Gaussian process (GP) models. Deep GPs are a deep belief network based on Gaussian process mappings. The data is modeled as the output of a multivariate GP. The inputs to that Gaussian process are then governed by another GP. A single layer model is equivalent to a standard GP or the GP latent variable model (GP-LVM). We perform inference in the model by approximate variational marginalization. This results in a strict lower bound on the marginal likelihood of the model which we use for model selection (number of layers and nodes per layer). Deep belief networks are typically applied to relatively large data sets using stochastic gradient descent for optimization. Our fully Bayesian treatment allows for the application of deep models even when data is scarce. Model selection by our variational bound shows that a five layer hierarchy is justified even when modelling a digit data set containing only 150 examples.
translated by 谷歌翻译